
54 The Delphi Magazine Issue 72

TechEd is now perhaps the larg-
est and most important

Microsoft event at which the com-
pany seeks to update customers
with its vision, goals and progress.
The US-based TechEd is normally
held slightly before the European
one, but the content of the two
events is very similar. I spent a
week in sunny Barcelona, Spain,
with over 7,500 delegates and
about 175 journalists, soaking up
all the latest developments in
Microsoft-land (as well as plenty of
delicious Mediterranean seafood:
oh, isn’t life hard...!).

Software development issues
formed a very significant part of
the content this year: perhaps
even more so than usual. The first
keynote was given by none other
than Anders Hejlsberg: the original
developer of Turbo Pascal and
Delphi, before he moved from
Borland to Microsoft. Anders is an
exceptionally talented software
developer and his skills are very
much in evidence at Microsoft.

As one would expect, the empha-
sis of TechEd was very much on
.NET and associated technologies.
Folk like to present slides that aim
to demonstrate that ‘the whole
history of technology has been
leading up to this moment’, with
cute illustrations. A key phrase
from TechEd this year is perhaps
‘the programmable web’, meaning
that there is intelligence at both
the client and server ends of the
wire. A rather surprising quoted

example was Napster: folk all over
the world making their music avail-
able through some client-side soft-
ware, with the help of Napster’s
server.

Strangely enough, this reminded
me of my trip out to Heathrow. The
minicab driver had got himself an
always-on broadband cable con-
nection to the internet and was
using a file-sharing program,
similar in concept to Napster, to
download gigabytes and gigabytes
of pirated software, music, videos
and whatever, from many thou-
sands of contributors around
the world. The key aspect of this
technology is that the stuff is
not located on one web server,
but on thousands and thousands
of PCs around the world: therefore
making all this material available
cannot realistically be policed
(without shutting down the net).

As you, dear reader, are a soft-
ware developer (perhaps with
your own software products to
sell), you will realise that there is
going to be a rather increased
interest in truly effective software
security systems. Cue Dave
Jewell’s review of Titanium 2.0 on
page 57.

Web Services
Anyway, I digress a little. What
Microsoft wants folk to be doing
with systems where there is intelli-
gence at both server and client is
using Web Services: the ability to
loosely couple applications using
SOAP (which is based, of course,
on XML) to transfer information
between server and client. The
advantage of SOAP is that it is
text-based and thus travels easily
through firewalls (unlike DCOM
and CORBA).

The protocols that Web Services
use are internet communications
(eg HTTP), XML for the data
format, XSD for the data type
system, SOAP for service interac-
tions, WSDL for service descrip-
tions, DISCO for service discovery
and UDDI for a service directory.

The loose coupling arises from
XML being language-neutral and
platform-neutral: the Web Services
server (which is providing some
information, or content) and the
Web Services client (which is con-
suming the service) do not need to
understand each others’ internal
implementations, nor do they
need to be able to do anything
more compatible than generate
and understand XML.

There is the possibility of new
business models: companies can
provide precisely the content they
are specialists in.

One example already in place is
OAG, which provides information
on flights: who flies where, when,
flight status and a whole lot more.
Check oag.com for more details.
Being a forward-thinking com-
pany, it has been looking at provid-
ing its information in new ways.
Part of this has involved the devel-
opment of a Web Service to pro-
vide flight status information and
an Office XP Smart Tag to consume
it. The idea is that if you type a
flight number into Word, for exam-
ple, the Smart Tag will recognise it

Chris Frizelle reports from Microsoft’s
annual European extravaganza

About Perspectives

The ‘occasional’ Perspectives column aims to give readers a wider perspec-
tive than just Delphi and Kylix, allowing us to keep an ear open to other

development technologies, with input from a variety of contributors. Do you
have an idea for something we should cover? Email me at chrisf@itecuk.com.
Chris Frizelle, Editor



August 2001 The Delphi Magazine 55

as a flight number and offer you the
ability to connect to the OAG Web
Service and retrieve flight status
information, which it pastes
directly into your Word document.
See www.oag.com/ smarttag for
more information.

You can imagine the same tech-
nology being used for currency
conversions, sporting results and a
whole lot more. Specific informa-
tion which at the moment we
access using a web browser but
could be delivered to just about
any application.

And Web Services are easy to
implement. Delphi 6 supports
them: check Bob Swart’s Under
Construction column on page 18 of
this very issue. David Intersimone
has an article on the Borland com-
munity website at

http://community.borland.com/
article/0,1410,27501,00.html

Tips from early adopters include
the usual advice to plan well, but
crucially not to overdo it: a Web
Service probably works best when
it does just one thing well and fast.

Of course, if you (or your clients)
want to make money at this game,
then security is important. Secure
sockets (SSL) can be used to
encrypt the transfer of information
between the Web Service server
and client. And do bear in mind
what might happen if your service
becomes really popular: stress-
test the software.

Visual Studio .NET
And, of course, Microsoft would
like you to believe that the best
tool to use to create Web Services
with is the forthcoming Visual
Studio .NET. Certainly, as Anders
pointed out, the .NET framework
has XML at its very core, rather
than bolted on as an afterthought.

Beta 2 of Visual Studio .NET was
given out free to the over 7,500 del-
egates at TechEd Europe (and a
similar number at TechEd US), so
Microsoft is making a strong effort
to test this product very thor-
oughly. If you have used Beta 1,
beware: there are some significant
changes. One interesting non-
technical change is that it is now

possible to distribute applications
created using Beta 2 (you need to
request a distribution licence from
Microsoft, via their website).

The .NET framework makes
development with Microsoft tools
both easier and more robust.
Easier, because Microsoft has seen
the light and dispensed with COM
(do I hear enthusiastic cheers all
around the world?), introduced
real components (not those horri-
ble VBX things), plus type safety,
garbage collection and exception
handling. It will be much harder for
developers to screw up. Much of
this we have already in Delphi, of
course, but I must admit the
garbage collection looks tasty.

As you will probably know,
Borland is working away on .NET
compatibility for Delphi, although
it is unclear whether this will mean
a new version of the Delphi IDE that
will use the .NET framework and
produce Intermediate Language
(IL) files, or a plug-in for Visual
Studio .NET, or even both. We must
wait and see.

What is very clear is that we in
the Delphi world have a huge head
start over developers who have
been weaned on Microsoft tools:
the concepts in .NET are ones we
are already very familiar with. The
stuff that others will ‘ooh’ and ‘aah’
over, we’ve been doing for years.
So let’s capitalise on our advan-
tage, embrace change, and jump
in. Oh, and we could all make some
useful dosh out of it all, too (not
that you are mercenary enough to
be interested in such things!).

The C# Language
Anders is, of course, the chief
designer of C#: the language which
almost all of the .NET framework is
written in, and which Microsoft
wants to be the language of choice
in the future. (It has to be said,
though, that the company appears
to have realised that many Visual
Basic developers would have to be
physically dragged, kicking,
screaming and biting, away from
their beloved development tool, so
they are putting more effort into
making the transition from VB 6.0
to VB.NET rather less painful than
indicated by Beta 1.)

I went to an interesting C# over-
view and spent most of the time
thinking ‘Ah, I see, yes, just like
Delphi...’ I kid you not, the thing is
basically an amalgam of Delphi
ideas and Java syntax, tweaked a
bit to avoid charges of plagiarism,
of course. For experienced Delphi
developers, getting used to the
syntax differences will be no hard-
ship. But why would we want to?

Components are very much at
the centre of .NET and C#, along
with properties, methods and
events. And will developers who
have been using Visual C++ or
Visual Basic be fully up to speed
with developing real components
for .NET? No, of course they won’t.
Who are the most likely candidates
for this important task, then? Right
first time: Delphi developers.
Folks, there is a world of opportu-
nity out there.

Sure, when the .NET flavour of
Delphi is ready it’s quite likely that
we’ll be able to create .NET compo-
nents in our favourite language as
easy as falling off a log, but while
we are waiting we could find that
there’s a nice little niche for us to
slip into while those VC++ guys are
still sat scratching their heads.
Folk like Developer Express, best
known for their innovative and
high quality Delphi components,
have already shown the way by
creating some .NET components.

There are some nice ideas I’d
like to see in Delphi, though. One is
embeddable XML comments. Just
type /// in the code editor and
Visual Studio .NET embeds an XML
outline for commenting (say, for a
procedure or function). Fill in the
gaps and then, at compile-time, the
system extracts the comments
(checking them, and adding more
too), combines them with an XSL
stylesheet and bingo: nicely for-
matted code documentation. It’s
not a new concept, but the way it’s
built into the system with some
extra swings and bells is very
good, in my opinion.

ASP.NET
I’m sure that those of you who
develop web applications will
have spent some time at least dem-
onstrating to clients why



56 The Delphi Magazine Issue 72

applications built in Delphi are so
much better than those written in
ASP server-side script (usually
VBScript). Yes, we’ve all visited
websites which have become over-
dependent on those horrid ASP
pages which take forever and a day
to do their thing.

But the day may come when you
and I are indeed developing web-
sites using ASP out of choice, not
with our arms twisted behind our
backs. But we’ll be using Delphi as
the language and seeing excellent
performance. How is this?

Well, ASP.NET is very different to
the ASP we know (and hate): it uses
any of the .NET languages (so that
will hopefully include Delphi at
some point) and compiles the
code, so you get good performance
(according to PC Magazine, 3 to 4
times as fast as old ASP).

Another advantage is the separa-
tion of the code from the content:
so your code is not jumbled up
with the designer’s pretty HTML,
but kept in clean isolation. And
XML is of course right at the heart,
along with better integration with
web forms, easier deployment, an
event-driven architecture and
more.

And you can build Web Services
with ASP.NET too: they get their
own file extension of .ASMX
(normal ASP.NET pages are .ASPX
to avoid confusion with the old
ASP). A nice touch is that you can
update ASP.NET applications even
while the existing copy is running:
just upload the new files and the
app will seamlessly recognise the
new version and switch to it when
appropriate. No more restarting
the web server just to allow you to
update your web apps, as is
needed right now with ISAPI. This
will make a huge difference.

ASP.NET is actually hosted in an
ISAPI application on the web
server (ASPNET_ISAPI) and also
provides goodies like state saving,
authentication, error recovery and
more.

Microsoft
Solutions Framework
One session I went to was quite
revealing. To be honest, I went for
the speaker more than the subject:
Rafal Lukawiecki, of UK company
Project Boticelli Ltd, is excellent at
getting complex stuff across and a
real treat to listen to. He was
describing how he and Microsoft
have used the Microsoft Solutions
Framework (MSF) to ensure largish
development projects don’t fail.
Dry stuff, you might think, but actu-
ally fascinating.

He had the usual horror statis-
tics (from the Standish Group):
only 26% of development projects
succeed, 28% fail, 46% are chal-
lenged (had problems but did not
totally fail), the average cost over-
run is 189%, 94% of projects have to
be re-started, the average time
overrun is 222%, the average func-
tionality delivered is 61%... Aaargh,
enough! We get the message.

MSF was used by Microsoft on
Windows 2000 and is currently
being used with Windows XP.
Being a framework it is flexible: it’s
not a rigid methodology. The mini-
mum size of project is said to be 3
months with a team of 3 people.

One of the most useful aspects at
Microsoft has been the use of a
daily build cycle, especially in the
testing phase. They do a fresh,
complete product build at 6pm
every day, incorporating all the
changes and fixes made that day.
Overnight, the new build is
installed and stress-tested, to
come up with an amended list of
stuff to fix for the key 9:30am team
meeting, where bugs are assigned
to developers for fixing.

You might say that this will pro-
duce delays, because some things
take more than a day to fix. The
response to this is that if some-
thing is taking more than a day it’s
serious and therefore merits a
proper team-wide review: it could
reflect some problem that is more
deep-seated.

Other aspects which seem to
work very well relate to the team.
Specifically, recognising the vari-
ous roles: development, program
management, testing, logistics,
product management and user

education. If a daily build cycle is
used from as early in the project as
possible, then there is something
to show the client, and get feed-
back on, from a very early stage. So
the likelihood of the client waiting
for months and months, getting
the beta and saying ‘that’s not
what I wanted!’ is a lot less. And the
interesting point is that physical
development is just one sixth of
the team (though it may be more,
or less, numerically of course).

Food for thought. Check www.
microsoft.com/msf for some more
information.

Conclusions
Time for me to wrap up. Although
there was less ‘new’ stuff this year,
I certainly saw ideas from previous
years which had become real
products, which in turn were being
used in real life. Things are moving
on. For us in the Delphi camp, I
believe that we need to recognise
the huge head start we have over
old-style developers used to the
old-style Microsoft tools: we
already know so much about the
ideas that Anders and others have
put into the heart of .NET, so let’s
run with our advantage and not get
left behind.

And, if you’re listening in Scotts
Valley, some news on ‘Delphi for
.NET’ (or whatever it might be
called) would be very timely,
please! What we need from
Borland is ‘.NET far better than
Microsoft can do it’. Delphi blew
Visual Basic out of the water when
it came out: we need Borland to
give us the same advantage with
.NET development. A tall order,
but there are still plenty of very tal-
ented people in the Delphi team.
Although not previously a Borland
approach, perhaps a public beta
might on this occasion be a worth-
while plan. It would show the
world that there is an alternative,
and it would convince Delphi
developers to stick with Delphi
and not abandon it for C#, which
could be a very attractive proposi-
tion for many, in all honesty.

Chris Frizelle (chrisf@itecuk.com)
is Editor of The Delphi Magazine.


	Web Services
	Visual Studio .NET
	The C# Language
	ASP.NET
	Microsoft Solutions Framework
	Conclusions

